Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Biochem Biophys Res Commun ; 709: 149811, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38569244

RESUMEN

Adequate dietary intake of amino acids is imperative for normal animal growth. Our previous work using rat hepatocarcinoma Fao cells demonstrated that growth hormone (GH) resistance, coupled with a concurrent reduction in insulin-like growth factor 1 (Igf1) mRNA levels, may underlie the growth retardation associated with a low-protein diet (LPD). In this study, we investigated whether FGF21 contributes to liver GH resistance in Fao rat hepatoma cells under amino acid deprivation conditions. Mice subjected to an LPD exhibited growth retardation, compromised GH signaling in the liver, and decreased blood IGF-1 levels compared with those on a control diet. To assess the potential involvement of fibroblast growth factor (FGF) 21, produced in response to amino acid deficiency, in the development of GH resistance, we examined GH signaling and Igf1 mRNA levels in Fao cells cultured in amino acid-deprived medium. Despite the inhibition of Fgf21 expression by the integrated stress response inhibitor, an inhibitor of the eukaryotic initiation factor 2-activating transcription factor 4 pathway, GH resistance persisted in response to amino acid deprivation. Additionally, the introduction of FGF21 into the control medium did not impair either GH signaling or GH-induced Igf1 transcription. These data suggest that, in Fao cells, amino acid deprivation induces GH resistance independently of FGF21 activity. By shedding light on the mechanisms behind growth retardation-associated GH resistance linked to amino acid deficiencies, our findings provide valuable insights for clinicians in formulating effective treatment strategies for individuals facing these challenges.


Asunto(s)
Aminoácidos , Hormona del Crecimiento , Ratas , Ratones , Animales , Hormona del Crecimiento/metabolismo , Aminoácidos/metabolismo , Hígado/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Trastornos del Crecimiento , ARN Mensajero/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo
2.
J Phys Chem Lett ; 15(4): 1097-1104, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38262433

RESUMEN

Interference reflection microscopy (IRM) is a powerful, label-free technique to visualize the surface structure of biospecimens. However, stray light outside a focal plane obscures the surface fine structures beyond the diffraction limit (dxy ≈ 200 nm). Here, we developed an advanced interferometry approach to visualize the surface fine structure of complex biospecimens, ranging from protein assemblies to single cells. Compared to 2-D, our unique 3-D structure illumination introduced to IRM enabled successful visualization of fine structures and the dynamics of protein crystal growth under lateral (dx-y ≈ 110 nm) and axial (dx-z ≤ 5 nm) resolutions and dynamical adhesion of microtubule fiber networks with lateral resolution (dx-y ≈ 120 nm), 10 times greater than unstructured IRM (dx-y ≈ 1000 nm). Simultaneous reflection/fluorescence imaging provides new physical fingerprints for studying complex biospecimens and biological processes such as myogenic differentiation and highlights the potential use of advanced interferometry to study key nanostructures of complex biospecimens.


Asunto(s)
Interferometría , Iluminación , Microscopía de Interferencia/métodos , Microtúbulos , Proteínas
3.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37894751

RESUMEN

Insulin receptor substrate-2 (IRS-2), a substrate of the insulin-like growth factor (IGF)-I receptor, is highly expressed in the prostate cancer cell line, PC3. We recently demonstrated that extracellular signal-regulated kinase (Erk1/2), a kinase downstream of IGF signaling, is activated in PC3 cells under serum starvation, and this activation can be inhibited by IRS-2 knockdown. Here, we observed that adding an IGF-I-neutralizing antibody to the culture medium inhibited the activation of Erk1/2. Suppression of Erk1/2 in IRS-2 knockdown cells was restored by the addition of a PC3 serum-free conditioned medium. In contrast, the IRS-2-silenced PC3 conditioned medium could not restore Erk1/2 activation, suggesting that IRS-2 promotes the secretion of proteins that activate the IGF signaling pathway. Furthermore, gelatin zymography analysis of the conditioned medium showed that matrix metalloproteinase-9 (MMP-9) was secreted extracellularly in an IRS-2 dependent manner when PC3 was cultured under serum starvation conditions. Moreover, MMP-9 knockdown suppressed Erk1/2 activation, DNA synthesis, and migratory activity. The IRS-2 levels were positively correlated with Gleason grade in human prostate cancer tissues. These data suggest that highly expressed IRS-2 activates IGF signaling by enabling the secretion of MMP-9, which is associated with hyperproliferation and malignancy of prostate cancer cell line, PC3.


Asunto(s)
Carcinoma , Neoplasias de la Próstata , Humanos , Masculino , Carcinoma/metabolismo , Línea Celular , Medios de Cultivo Condicionados/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Células PC-3 , Fosfoproteínas/metabolismo , Fosforilación , Próstata/patología , Neoplasias de la Próstata/metabolismo
4.
STAR Protoc ; 4(3): 102471, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37515762

RESUMEN

Synthetic protocols providing mechanical patterns to culture substrate are essential to control the self-condensation of cells for organoid engineering. Here, we present a protocol for preparing hydrogels with mechanical patterns. We describe steps for hydrogel synthesis, mechanical evaluation of the substrate, and time-lapse imaging of cell self-organization. This protocol will facilitate the rational design of culture substrates with mechanical patterns for the engineering of various functional organoids. For complete details on the use and execution of this protocol, please refer to Takebe et al. (2015) and Matsuzaki et al. (2014, 2022).1,2,3.

5.
Geroscience ; 45(4): 2707-2726, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37118349

RESUMEN

Nutritional requirements for maintaining metabolic health may vary with each life stage, such as young, middle, and old age. To investigate the appropriate ratio of nutrients, particularly proteins, for maintaining metabolic health while approaching old age, young (6-month-old) and middle-aged (16-month-old) mice were fed isocaloric diets with varying protein percentages (5%, 15%, 25%, 35%, and 45% by calorie ratio) for two months. The low-protein diet developed mild fatty liver, with middle-aged mice showing more lipids than young mice, whereas the moderate-protein diet suppressed lipid contents and lowered the levels of blood glucose and lipids. Self-organizing map (SOM) analysis revealed that plasma amino acid profiles differed depending on age and difference in protein diet and were associated with hepatic triglyceride and cholesterol levels. Results indicate that the moderate protein intake percentages (25% and 35%) are required for maintaining metabolic health in middle-aged mice, which is similar to that in young mice.


Asunto(s)
Dieta , Hígado , Ratones , Animales , Hígado/metabolismo , Ingestión de Energía , Triglicéridos , Glucemia/metabolismo
6.
Angiogenesis ; 26(1): 37-52, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35902510

RESUMEN

Orbital cavernous venous malformation (OCVM) is a sporadic vascular anomaly of uncertain etiology characterized by abnormally dilated vascular channels. Here, we identify a somatic missense mutation, c.121G > T (p.Gly41Cys) in GJA4, which encodes a transmembrane protein that is a component of gap junctions and hemichannels in the vascular system, in OCVM tissues from 25/26 (96.2%) individuals with OCVM. GJA4 expression was detected in OCVM tissue including endothelial cells and the stroma, through immunohistochemistry. Within OCVM tissue, the mutation allele frequency was higher in endothelial cell-enriched fractions obtained using magnetic-activated cell sorting. Whole-cell voltage clamp analysis in Xenopus oocytes revealed that GJA4 c.121G > T (p.Gly41Cys) is a gain-of-function mutation that leads to the formation of a hyperactive hemichannel. Overexpression of the mutant protein in human umbilical vein endothelial cells led to a loss of cellular integrity, which was rescued by carbenoxolone, a non-specific gap junction/hemichannel inhibitor. Our data suggest that GJA4 c.121G > T (p.Gly41Cys) is a potential driver gene mutation for OCVM. We propose that hyperactive hemichannel plays a role in the development of this vascular phenotype.


Asunto(s)
Mutación con Ganancia de Función , Malformaciones Vasculares , Humanos , Células Endoteliales , Uniones Comunicantes/genética , Mutación , Venas , Malformaciones Vasculares/metabolismo
7.
iScience ; 25(10): 105109, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36317160

RESUMEN

Spatially controlled self-organization represents a major challenge for organoid engineering. We have developed a mechanically patterned hydrogel for controlling self-condensation process to generate multi-cellular organoids. We first found that local stiffening with intrinsic mechanical gradient (IG > 0.008) induced single condensates of mesenchymal myoblasts, whereas the local softening led to stochastic aggregation. Besides, we revealed the cellular mechanism of two-step self-condensation: (1) cellular adhesion and migration at the mechanical boundary and (2) cell-cell contraction driven by intercellular actin-myosin networks. Finally, human pluripotent stem cell-derived hepatic progenitors with mesenchymal/endothelial cells (i.e., liver bud organoids) experienced collective migration toward locally stiffened regions generating condensates of the concave to spherical shapes. The underlying mechanism can be explained by force competition of cell-cell and cell-hydrogel biomechanical interactions between stiff and soft regions. These insights will facilitate the rational design of culture substrates inducing symmetry breaking in self-condensation of differentiating progeny toward future organoid engineering.

8.
Nutrients ; 14(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36235570

RESUMEN

Although branched-chain amino acids (BCAA) are known to stimulate myofibrillar protein synthesis and affect insulin signaling and kynurenine metabolism (the latter being a metabolite of tryptophan associated with depression and dementia), the effects of BCAA supplementation on type 2 diabetes (T2D) are not clear. Therefore, a 24-week, prospective randomized open blinded-endpoint trial was conducted to evaluate the effects of supplementation of 8 g of BCAA or 7.5 g of soy protein on skeletal muscle and glycemic control as well as adverse events in elderly individuals with T2D. Thirty-six participants were randomly assigned to the BCAA group (n = 21) and the soy protein group (n = 15). Skeletal muscle mass and HbA1c, which were primary endpoints, did not change over time or differ between groups. However, knee extension muscle strength was significantly increased in the soy protein group and showed a tendency to increase in the BCAA group. Homeostasis model assessment for insulin resistance did not significantly change during the trial. Depressive symptoms were significantly improved in the BCAA group but the difference between groups was not significant. Results suggested that BCAA supplementation may not affect skeletal muscle mass and glycemic control and may improve depressive symptoms in elderly individuals with T2D.


Asunto(s)
Aminoácidos de Cadena Ramificada , Diabetes Mellitus Tipo 2 , Anciano , Aminoácidos de Cadena Ramificada/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Hemoglobina Glucada/metabolismo , Control Glucémico , Humanos , Insulina/metabolismo , Quinurenina/metabolismo , Músculo Esquelético/metabolismo , Estudios Prospectivos , Proteínas de Soja/metabolismo , Triptófano/metabolismo
9.
Skelet Muscle ; 12(1): 24, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36258243

RESUMEN

BACKGROUND: Duchenne muscular dystrophy (DMD) is an X-linked muscle disease caused by a complete lack of dystrophin, which stabilizes the plasma membrane of myofibers. The orofacial function is affected in an advanced stage of DMD and this often leads to an eating disorder such as dysphagia. Dysphagia is caused by multiple etiologies including decreased mastication and swallowing. Therefore, preventing the functional declines of mastication and swallowing in DMD is important to improve the patient's quality of life. In the present study, using a rat model of DMD we generated previously, we performed analyses on the masseter and tongue muscles, both are required for proper eating function. METHODS: Age-related changes of the masseter and tongue muscle of DMD rats were analyzed morphometrically, histologically, and immunohistochemically. Also, transcription of cellular senescent markers, and utrophin (Utrn), a functional analog of dystrophin, was examined. RESULTS: The masseter muscle of DMD rats showed progressive dystrophic changes as observed in their hindlimb muscle, accompanied by increased transcription of p16 and p19. On the other hand, the tongue of DMD rats showed macroglossia due to hypertrophy of myofibers with less dystrophic changes. Proliferative activity was preserved in the satellite cells from the tongue muscle but was perturbed severely in those from the masseter muscle. While Utrn transcription was increased in the masseter muscle of DMD rats compared to WT rats, probably due to a compensatory mechanism, its level in the tongue muscle was comparable between WT and DMD rats and was similar to that in the masseter muscle of DMD rats. CONCLUSIONS: Muscular dystrophy is less advanced in the tongue muscle compared to the masseter muscle in the DMD rat.


Asunto(s)
Trastornos de Deglución , Macroglosia , Distrofia Muscular de Duchenne , Ratones , Ratas , Animales , Distrofina/genética , Distrofina/metabolismo , Distrofia Muscular de Duchenne/complicaciones , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Utrofina/metabolismo , Ratones Endogámicos mdx , Macroglosia/etiología , Macroglosia/patología , Trastornos de Deglución/metabolismo , Trastornos de Deglución/patología , Calidad de Vida , Músculo Esquelético/metabolismo , Lengua
10.
Front Endocrinol (Lausanne) ; 13: 929668, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35846271

RESUMEN

Oxygen deprivation induces multiple changes at the cellular and organismal levels, and its re-supply also brings another special physiological status. We have investigated the effects of hypoxia/re-oxygenation on embryonic growth using the zebrafish model: hypoxia slows embryonic growth, but re-oxygenation induces growth spurt or catch-up growth. The mitogen-activated kinase (MAPK)-pathway downstream insulin-like growth factor (IGF/Igf) has been revealed to positively regulate the re-oxygenation-induced catch-up growth, and the role of reactive oxygen species generated by environmental oxygen fluctuation is potentially involved in the phenomenon. Here, we report the role of NADPH-oxidase (Nox)-dependent hydrogen peroxide (H2O2) production in the MAPK-activation and catch-up growth. The inhibition of Nox significantly blunted catch-up growth and MAPK-activity. Amongst two zebrafish insulin receptor substrate 2 genes (irs2a and irs2b), the loss of irs2b, but not its paralog irs2a, resulted in blunted MAPK-activation and catch-up growth. Furthermore, irs2b forcedly expressed in mammalian cells allowed IGF-MAPK augmentation in the presence of H2O2, and the irs2b deficiency completely abolished the somatotropic action of Nox in re-oxygenation condition. These results indicate that redox signaling alters IGF/Igf signaling to facilitate hypoxia/re-oxygenation-induced embryonic growth compensation.


Asunto(s)
Somatomedinas , Pez Cebra , Animales , Peróxido de Hidrógeno , Hipoxia/metabolismo , Mamíferos/metabolismo , NADP/metabolismo , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Oxígeno/metabolismo , Somatomedinas/metabolismo
12.
Cells ; 11(9)2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35563827

RESUMEN

Essential amino acids (EAAs) are those that cannot be synthesized enough to meet organismal demand; therefore, it is believed that they must be taken from the diet for optimal growth. The growth hormone (GH)/insulin-like growth factor-I (IGF-I) system is also considered significant for growth regulation in mammals. This study aimed to evaluate the relative contributions of protein nutrition and the GH/IGF-I system to body growth regulation. Experiments using rodents and hepatocyte-derived cell lines subjected to EAA deficiency showed that a reduction in the serum EAA concentration hinders Igf1 transcription in the liver in a cell-autonomous manner, thereby decreasing serum IGF-I levels. Remarkably, when the serum IGF-I level of mice on a low-protein diet was restored by the recombinant IGF-I infusion, the body growth was mostly rescued, although the mice were still deficient in EAA intake. Meanwhile, the GH signal activation and subsequent Igf1 transcription were also dramatically diminished by EAA deprivation in the cell culture model. Altogether, we demonstrate that EAAs are not strictly necessary for animal growth as building blocks but are required as IGF-I-tropic cues. The results will bring a paradigm shift regarding the definition of "essential" amino acids.


Asunto(s)
Hormona del Crecimiento , Factor I del Crecimiento Similar a la Insulina , Aminoácidos Esenciales/metabolismo , Animales , Dieta con Restricción de Proteínas , Hormona del Crecimiento/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Hígado/metabolismo , Mamíferos/metabolismo , Ratones
13.
Animals (Basel) ; 11(11)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34828046

RESUMEN

This study assessed the feasibility of using a vegetable extract, MGM-P (quebracho tannin product), as an alternative to antibiotics for weaned piglets; it investigated MGM-P effects on growth performance, diarrhea, and overall health in early-weaned piglets. In total, 24 piglets were allocated to three treatment groups fed basal diets supplemented with 0, 0.2%, or 0.3% MGM-P for 20 days. The addition of 0.3% MGM-P to the diet of early-weaned piglets improved diarrhea incidence, hematological parameters, and intestinal mucosa structure. Furthermore, the addition of 0.2% or 0.3% MGM-P to the diet of early-weaned piglets did not affect their overall health. Importantly, MGM-P had no effects on average daily gain (ADG), average daily feed intake (ADFI), or feed conversion ratio (FCR). Gut morphology analysis showed that treatment with 0.3% MGM-P enhanced the jejunal villus height (p < 0.05) while reducing the ileal crypt depth (p < 0.05) and colon mucosal thickness (p < 0.05). Collectively, the findings suggested that the use of MGM-P as an alternative to dietary antibiotics could improve diarrhea incidence in early-weaned piglets without negative effects on growth performance or overall health.

14.
J Biol Chem ; 297(4): 101179, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34508782

RESUMEN

We previously reported that dietary amino acid restriction induces the accumulation of triglycerides (TAG) in the liver of growing rats. However, differences in TAG accumulation in individual cell types or other tissues were not examined. In this study, we show that TAG also accumulates in the muscle and adipose tissues of rats fed a low amino acid (low-AA) diet. In addition, dietary lysine restriction (low-Lys) induces lipid accumulation in muscle and adipose tissues. In adjusting the nitrogen content to that of the control diet, we found that glutamic acid supplementation to the low-AA diet blocked lipid accumulation, but supplementation with the low-Lys diet did not, suggesting that a shortage of nitrogen caused lipids to accumulate in the skeletal muscle in the rats fed a low-AA diet. Serum amino acid measurement revealed that, in rats fed a low-Lys diet, serum lysine levels were decreased, while serum threonine levels were significantly increased compared with the control rats. When the threonine content was restricted in the low-Lys diet, TAG accumulation induced by the low-Lys diet was completely abolished in skeletal muscle. Moreover, in L6 myotubes cultured in medium containing high threonine and low lysine, fatty acid uptake was enhanced compared with that in cells cultured in control medium. These findings suggest that the increased serum threonine in rats fed a low-Lys diet resulted in lipid incorporation into skeletal muscle, leading to the formation of fatty muscle tissue. Collectively, we propose conceptual hypothesis that "amino-acid signal" based on lysine and threonine regulates lipid metabolism.


Asunto(s)
Metabolismo de los Lípidos , Lisina/deficiencia , Treonina/sangre , Triglicéridos/metabolismo , Tejido Adiposo/metabolismo , Animales , Células Cultivadas , Hígado/metabolismo , Masculino , Músculo Esquelético/metabolismo , Especificidad de Órganos , Ratas , Ratas Wistar
15.
iScience ; 24(7): 102778, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34278273

RESUMEN

Emerging evidence has shown that amino acids act as metabolic regulatory signals. Here, we showed that glucose-6-phosphatase (G6Pase) mRNA levels in cultured hepatocyte models were downregulated in an amino-acid-depleted medium. Inversely, stimulation with amino acids increased G6Pase mRNA levels, demonstrating that G6Pase mRNA level is directly controlled by amino acids in a reversible manner. Promoter assay revealed that these amino-acid-mediated changes in G6Pase mRNA levels were attributable to transcriptional regulation, independent of canonical hormone signaling pathways. Metabolomic analysis revealed that amino acid starvation induces a defect in the urea cycle, decreasing ornithine, a major intermediate, and supplementation of ornithine in an amino-acid-depleted medium fully rescued G6Pase mRNA transcription, similar to the effects of amino acid stimulation. This pathway was also independent of established mammalian target of rapamycin complex 1 pathway. Collectively, we present a hypothetical concept of "metabolic regulatory amino acid signal," possibly mediated by ornithine.

16.
Biochimie ; 187: 25-32, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34022289

RESUMEN

Insulin receptor (IR) pre-mRNA undergoes alternative splicing that produces two isoforms, IR-A and IR-B. The ratio of IR-A to IR-B varies among tissues, which strongly suggests that IR mRNA alternative splicing is regulated in a tissue-specific manner. However, the precise molecular mechanism for IR alternative splicing remains to be elucidated, especially in liver. In this study, we have analyzed IR alternative splicing mechanism by preparing a mini-gene splicing reporter with rat genomic DNA. The splicing reporter that contains exon 11 and its flanking intronic sequences could reproduce alternative splicing pattern in rat hepatoma H4IIE cells. Introducing several deletions in introns of the reporter revealed that intron 11 contains the region near exon 11 essential to promote exon 11 inclusion. This region contains an UGCAUG sequence, a specific binding site for the Rbfox splicing regulator, and mutation in this sequence results in exon 11 skipping. Furthermore, RbFox2 knockdown in H4IIE cells enhanced exon 11 skipping of endogenous IR pre-mRNA. Lastly mutations in the SRSF3 binding site of exon11 together with the Rbfox2 binding site completely abolished exon 11 inclusion with a mini-gene reporter pre-mRNA. Our results indicate that RbFox2 and SRSF3 proteins mediate exon 11 inclusion in rat hepatoma cells.


Asunto(s)
Empalme Alternativo , Carcinoma Hepatocelular/metabolismo , Exones , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Factores de Empalme de ARN/metabolismo , Receptor de Insulina/biosíntesis , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Proteínas de Neoplasias/genética , Factores de Empalme de ARN/genética , Ratas , Receptor de Insulina/genética
17.
Commun Biol ; 4(1): 209, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33608631

RESUMEN

Sirtuin 1 (SIRT1), an NAD+-dependent deacetylase, is a crucial regulator that produces multiple physiological benefits, such as the prevention of cancer and age-related diseases. SIRT1 is activated by sirtuin-activating compounds (STACs). Here, we report that quercetin 3,5,7,3',4'-pentamethyl ether (KPMF-8), a natural STAC from Thai black ginger Kaempferia parviflora, interacts with SIRT1 directly and stimulates SIRT1 activity by enhancing the binding affinity of SIRT1 with Ac-p53 peptide, a native substrate peptide without a fluorogenic moiety. The binding affinity between SIRT1 and Ac-p53 peptide was enhanced 8.2-fold by KPMF-8 but only 1.4-fold by resveratrol. The specific binding sites of KPMF-8 to SIRT1 were mainly localized to the helix2-turn-helix3 motif in the N-terminal domain of SIRT1. Intracellular deacetylase activity in MCF-7 cells was promoted 1.7-fold by KPMF-8 supplemented in the cell medium but only 1.2-fold by resveratrol. This work reveals that KPMF-8 activates SIRT1 more effectively than resveratrol does.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Activadores de Enzimas/farmacología , Quercetina/farmacología , Sirtuina 1/metabolismo , Zingiberaceae , Regulación Alostérica , Antineoplásicos Fitogénicos/aislamiento & purificación , Sitios de Unión , Neoplasias de la Mama/enzimología , Activación Enzimática , Activadores de Enzimas/aislamiento & purificación , Femenino , Humanos , Células MCF-7 , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica en Hélice alfa , Quercetina/análogos & derivados , Quercetina/aislamiento & purificación , Resveratrol/farmacología , Zingiberaceae/química
18.
Nutrition ; 85: 111130, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33545537

RESUMEN

OBJECTIVES: Protein deficiency is known to cause ectopic fat accumulation in the liver. The aim of this study was to analyse the mechanism of suppression of hepatic fat accumulation by testosterone and to clarify the mechanism behind the gender difference in fatty liver formation due to protein deficiency. METHODS: Hepatic fat accumulation due to protein deficiency was evaluated in male and female rats before and after sexual maturation. Then, the effects of testosterone on liver lipid, muscle protein metabolism and energy expenditure in adipose tissue were investigated in castrated or testosterone-injected male rats fed control or protein-restricted diet. RESULTS: Hepatic triglyceride accumulation diminished with sex maturation in male but not in female protein-restricted rats. Protein restriction resulted in a significant increase in hepatic triglyceride content in castrated rats but not in sham-operated rats demonstrating that endogenous testosterone reduces hepatic lipid accumulation in male rats. Protein restriction reduced plasma IGF-I and muscle protein synthesis measured using the SUnSET method. Castration increased the plasma corticosterone level and muscle autophagic activity. Muscle weight was reduced and energy expenditure in adipose tissue was increased only when both factors were combined. CONCLUSIONS: Muscle protein synthesis downregulation owing to protein restriction and activation of autophagy following castration reduced muscle mass thereby releasing surplus energy and promoting steatosis in protein-restricted castrated rats despite increased energy expenditure in adipose tissue. We hypothesize that endogenous testosterone reduces hepatic lipid accumulation in protein-deficient male rats and provide novel findings on the gender-specific differences in hepatic steatosis.


Asunto(s)
Hígado Graso , Testosterona , Tejido Adiposo/metabolismo , Animales , Hígado Graso/tratamiento farmacológico , Hígado Graso/etiología , Hígado Graso/prevención & control , Femenino , Metabolismo de los Lípidos , Hígado/metabolismo , Masculino , Ratas , Testosterona/metabolismo , Triglicéridos/metabolismo
19.
Cell Rep Methods ; 1(4): 100052, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35475143

RESUMEN

Engineered synthetic biomolecular devices that integrate elaborate information processing and precisely regulate living cell behavior have potential in various applications. Although devices that directly regulate key biomolecules constituting inherent biological systems exist, no devices have been developed to control intracellular membrane architecture, contributing to the spatiotemporal functions of these biomolecules. This study developed a synthetic biomolecular device, termed inducible counter mitochondrial morphology (iCMM), to manipulate mitochondrial morphology, an emerging informative property for understanding physiopathological cellular behaviors, on a minute timescale by using a chemically inducible dimerization system. Using iCMM, we determined cellular changes by altering mitochondrial morphology in an unprecedented manner. This approach serves as a platform for developing more sophisticated synthetic biomolecular devices to regulate biological systems by extending manipulation targets from conventional biomolecules to mitochondria. Furthermore, iCMM might serve as a tool for uncovering the biological significance of mitochondrial morphology in various physiopathological cellular processes.


Asunto(s)
Mitocondrias , Biología Sintética
20.
Sci Rep ; 10(1): 22110, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33335253

RESUMEN

Studies on animal models have demonstrated that feeding a low-arginine diet inhibits triacylglycerol (TAG) secretion from the liver, resulting in marked fatty liver development in rats. Here, we first showed that culturing hepatocytes in the medium mimicking the serum amino acid profile of low-arginine diet-fed rats induced TAG accumulation in the cells, indicating that the specific amino acid profile caused TAG accumulation in hepatocytes. Dietary adenine supplementation completely recovered hepatic TAG secretion and abolished hepatic TAG accumulation in rats. A comprehensive non-linear analysis revealed that inhibition of hepatic TAG accumulation by dietary adenine supplementation could be predicted using only serum amino acid concentration data. Comparison of serum amino acid concentrations indicated that histidine, methionine, and branched-chain amino acid (BCAA) concentrations were altered by adenine supplementation. Furthermore, when the serum amino acid profiles of low-arginine diet-fed rats were altered by modifying methionine or BCAA concentrations in their diets, their hepatic TAG accumulation was abolished. Altogether, these results suggest that an increase in methionine and BCAA levels in the serum in response to dietary arginine deficiency is a key causative factor for hepatic TAG accumulation, and dietary adenine supplementation could disrupt this phenomenon by altering serum amino acid profiles.


Asunto(s)
Adenina/administración & dosificación , Aminoácidos/sangre , Suplementos Dietéticos , Susceptibilidad a Enfermedades , Hígado Graso/etiología , Hígado Graso/metabolismo , Animales , Modelos Animales de Enfermedad , Hígado Graso/patología , Hepatocitos/metabolismo , Metaboloma , Metabolómica/métodos , Purinas/metabolismo , Ratas , Triglicéridos/biosíntesis , Triglicéridos/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...